Package: serrsBayes 0.5-0
serrsBayes: Bayesian Modelling of Raman Spectroscopy
Sequential Monte Carlo (SMC) algorithms for fitting a generalised additive mixed model (GAMM) to surface-enhanced resonance Raman spectroscopy (SERRS), using the method of Moores et al. (2016) <arxiv:1604.07299>. Multivariate observations of SERRS are highly collinear and lend themselves to a reduced-rank representation. The GAMM separates the SERRS signal into three components: a sequence of Lorentzian, Gaussian, or pseudo-Voigt peaks; a smoothly-varying baseline; and additive white noise. The parameters of each component of the model are estimated iteratively using SMC. The posterior distributions of the parameters given the observed spectra are represented as a population of weighted particles.
Authors:
serrsBayes_0.5-0.tar.gz
serrsBayes_0.5-0.zip(r-4.5)serrsBayes_0.5-0.zip(r-4.4)serrsBayes_0.5-0.zip(r-4.3)
serrsBayes_0.5-0.tgz(r-4.4-x86_64)serrsBayes_0.5-0.tgz(r-4.4-arm64)serrsBayes_0.5-0.tgz(r-4.3-x86_64)serrsBayes_0.5-0.tgz(r-4.3-arm64)
serrsBayes_0.5-0.tar.gz(r-4.5-noble)serrsBayes_0.5-0.tar.gz(r-4.4-noble)
serrsBayes_0.5-0.tgz(r-4.4-emscripten)serrsBayes_0.5-0.tgz(r-4.3-emscripten)
serrsBayes.pdf |serrsBayes.html✨
serrsBayes/json (API)
NEWS
# Install 'serrsBayes' in R: |
install.packages('serrsBayes', repos = c('https://mooresm.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mooresm/serrsbayes/issues
bayesianchemometricsramansequential-monte-carlospectroscopy
Last updated 3 years agofrom:1896185dba. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-win-x86_64 | OK | Nov 12 2024 |
R-4.5-linux-x86_64 | OK | Nov 12 2024 |
R-4.4-win-x86_64 | OK | Nov 12 2024 |
R-4.4-mac-x86_64 | OK | Nov 12 2024 |
R-4.4-mac-aarch64 | OK | Nov 12 2024 |
R-4.3-win-x86_64 | OK | Nov 12 2024 |
R-4.3-mac-x86_64 | OK | Nov 12 2024 |
R-4.3-mac-aarch64 | OK | Nov 12 2024 |
Exports:computeLogLikelihoodcopyLogProposalseffectiveSampleSizefitSpectraMCMCfitSpectraSMCfitVoigtIBISfitVoigtPeaksSMCgetBsplineBasisgetVoigtParammarginalMetropolisUpdatemhUpdateVoigtmixedVoigtresampleParticlesresidualResamplingreWeightParticlessumDexpsumDlogNormsumDnormweightedGaussianweightedLorentzianweightedMeanweightedVariance